证明1.Let A,B,and C be sets.Prove thatA∪包含 (A∪B ∪C).2.Let A,B,and C be sets.Prove that(A-C)∩(C -B) = 空集

问题描述:

证明
1.Let A,B,and C be sets.Prove that
A∪包含 (A∪B ∪C).
2.Let A,B,and C be sets.Prove that
(A-C)∩(C -B) = 空集

1,如果证明A∪B包含 (A∪B ∪C)
任取x属于A∪B
它要么在A中,要么在B中
所以也一定在 (A∪B ∪C)中
所以成立
2,因为(A-C)里的元素是不属于C的,而(C -B) 中的元素都是属于C的
所以它们不相交,所以是空集

1、Pick a∈A∪B ,then a a∈A or a∈B.there are two cases:case 1 :a∈A,then a must be a member ofone of A,B,C.that means a a∈A∪B ∪Ccase 2:a∈B,similarly discuss.so in both cases,a must be member of ...