已知y=(2x-1)/(x-1) 且x>0 则实数y的取值范围是?

问题描述:

已知y=(2x-1)/(x-1) 且x>0 则实数y的取值范围是?

Y=(2X-2+1)/(X-1)
Y=2+1/(X-1)
X>0,所以X-1>-1,1/(X-1)>0或1/(X-1)<-1
因此Y>2或Y<1
值域是(-∞,1)∪(2,+∞)

y=(2x-1)/(x-1)=[2(x-1)+1]/(x-1)=2+[1/(x-1)].===>y-2=1/(x-1).===>x-1=1/(y-2).===>1+[1/(y-2)]=x>0.===>1+[1/(y-2)]>0.===>(y-1)/(y-2)>0.===>(y-1)(y-2)>0.===>y<1,或y>2.即y∈(-∞,1)∪(2,+∞).

两种方法:(一)分离常数法;(二)反函数法.
(法一)原来函数变形:y=(2x-1)/(x-1)=(2x-2+1)/(x-1)
=[2(x-1)+1]/(x-1)=2+1/(x-1)
因为x>0,所以(x-1)>-1
则:当(x-1)>0时,1/(x-1)>0,所以2+1/(x-1)>2,即y>2
当-1