已知{an}为等差数列,a2+a8=12,则a5等于( )A. 4B. 5C. 6D. 7
问题描述:
已知{an}为等差数列,a2+a8=12,则a5等于( )
A. 4
B. 5
C. 6
D. 7
答
解法1:∵{an}为等差数列,设首项为a1,公差为d,
∴a2+a8=a1+d+a1+7d=2a1+8d=12;
∴a1+4d=6;
∴a5=a1+4d=6.
解法2:∵a2+a8=2a5,a2+a8=12,
∴2a5=12,
∴a5=6,
故选C.
答案解析:将a2+a8用a1和d表示,再将a5用a1和d表示,从中寻找关系解决,或结合已知,根据等差数列的性质a2+a8=2a5求解.
考试点:等差数列.
知识点:解法1用到了基本量a1与d,还用到了整体代入思想;
解法2应用了等差数列的性质:{an}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.
特例:若m+n=2p(m,n,p∈N+),则am+an=2ap.