设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是(  )A. (9,49)B. (13,49)C. (9,25)D. (3,7)

问题描述:

设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是(  )
A. (9,49)
B. (13,49)
C. (9,25)
D. (3,7)

∵对于任意的x都有f(-x)+f(x)=0恒成立∴f(-x)=-f(x)∵f(m2-6m+21)+f(n2-8n)<0,∴f(m2-6m+21)<-f(n2-8n)=f(-n2+8n),∵f(x)是定义在R上的增函数,∴m2-6m+21<-n2+8n∴(m-3)2+(n-4)2<4∵...
答案解析:根据对于任意的x都有f(-x)+f(x)=0恒成立,不等式可化为f(m2-6m+21)<f(-n2+8n),利用f(x)是定义在R上的增函数,可得(m-3)2+(n-4)2<4,确定(m-3)2+(n-4)2=4内的点到原点距离的取值范围,利用m2+n2 表示(m-3)2+(n-4)2=4内的点到原点距离的平方,即可求得m2+n2 的取值范围.
考试点:奇偶性与单调性的综合.
知识点:本题考查函数的奇偶性与单调性,考查不等式的含义,解题的关键是确定圆内的点到原点距离的取值范围.