已知向量a=(cosA,-2),b=(sinA,1)且向量a.b平行,则tan(A-圆周率/4)=?

问题描述:

已知向量a=(cosA,-2),b=(sinA,1)且向量a.b平行,则tan(A-圆周率/4)=?

因a//b,则:cosA/sinA=-1/2,即:tanA=-1/2,tan(A-π/4)=[tanA-tan(π/4)]/[1+tanAtan(π/4)]=[tanA-1]/[1+tanA]=-3

向量平行,对应坐标成比例,因为有数字,排除0向量可能。
cosA*1=sinA*-2
tanA=-1/2
tan(A-π/4)=(-1/2-1)/1+(-1/2)*1=-3

向量a.b平行,则cosA/-2=sinA/1得:tanA= -1/2
tan(A-π/4)=(tanA-tanπ/4)/(1+tanA*tanπ/4)=(-3/2)/(1/2)= -3

向量a=(cosA,-2),b=(sinA,1)且向量a.b平行,
所以
sinA/cosA=-1/2=tanA
tan(A-圆周率/4)=(tanA-tanπ/4)/(1+tanAtanπ/4)
=(-1/2-1)/(1-1/2)
=-3

cosa/-2=sina/1
-0.5=sina/cosa
tana=-0.5
tan(a-π/4)=(tana-tanπ/4)/(1+tana*tanπ/4)=-1.5/0.5=-3