求证sina^2+sin&^2-sina^2*sin&^2+cosa^2*cos&^2=1

问题描述:

求证sina^2+sin&^2-sina^2*sin&^2+cosa^2*cos&^2=1

sina=sin[(a+b)/2+(a-b)/2]=sin(a+b)/2cos(a-b)/2+cos(a+b)/2sin(a-b)/2 sinb=sin[(a+b)/2-(a-b)/2]=sin(a+b)/

(sina)^2+(sin&)^2-(sina)^2*(sin&)^2+(cosa)^2*(cos&)^2
=(sina)^2) + (sin&)^2(1-(sina)^2) + (cosa)^2(cos&)^2)
=(sina)^2 + (sin&)^2(cosa)^2 + (cosa)^2(cos&)^2
=(sina)^2 + (cosa)^2
=1.

原式=sina^2+(sin&^2-sina^2*sin&^2)+cosa^2*cos&^2=sina^2+sin&^2(1-sina^2)+cosa^2*cos&^2=sina^2+(sin&^2*cosa^2+cosa^2*cos&^2)=sina^2+(sin&^2+cos&^2)*cosa^2=sina^2+cosa^2=1