1.解方程:x平方+x平方分之1+x+x分之1=02.已知:a平方+b平方+a平方b平方-18ab+64=0.求a,b的值急

问题描述:

1.解方程:x平方+x平方分之1+x+x分之1=0
2.已知:a平方+b平方+a平方b平方-18ab+64=0.求a,b的值

1.
设k=x+1/x
则k^2=x^2+2+1/x^2
x^2+1/x^2=k^2-2
原方程可化为
k^2-2+k=0
(k-1)(k+2)=0
k=1或k=-2
x+1/x=1或x+1/x=-2
x^2-x+1=0或x^2+2x+1=0
x^2-x+1=0的判别式小于0,无解
x^2+2x+1=0得(x+1)^2=0,x=-1
经检验,x=-1是原方程的解
2.
a^2-2ab+b^2+a^2b^2-16ab+64=0
(a-b)^2+(ab-8)^2=0
所以a=b且ab=8
解得a=2√2,b=2√2或a=-2√2,b=-2√2

1、x平方+x平方分之1+x+x分之1=0
x=-1
2 、a平方+b平方+a平方b平方-18ab+64=0
a=b=2倍根号2或负2倍根号

1、令a=x+1/xa²=x²+2+1/x²x²+1/x²=a²-2所以a²-2+a=0(a+2)(a-1)=0a=-2,a=1x+1/x=-2x²+2x+1=0(x+1)²=0x=-1x+1/x=1x²-x+1=0无解所以x=-12、(a²-2ab+b²)+(...