在三角形ABC中,角A,B,C所对边的长分别为a,b,c,若a的平方+b的平方=2c平方,则cosC的最小值为多少啊
问题描述:
在三角形ABC中,角A,B,C所对边的长分别为a,b,c,若a的平方+b的平方=2c平方,则cosC的最小值为多少啊
答
1/2
答
若:a²+b²=2c²;c²=(a²+b²)/2
又因:c²=a²+b²-2abcosC
所以:(a²+b²)/2=a²+b²-2abcosC
a²+b²)/2=2abcosC
a²+b²=4abcosC
cosC=( a²+b²)/(4ab)
又因:a²+b²≥2ab (a>0;b>0)
所以:cosC≥2ab/(4ab)
cosC≥1/2
即:cosC的最小值为1/2.