在RT△ABC中,角C=90,角A,角B的对边分别为a,b,c,由sinA=a/c,cosA=b/c可得sin²A+cos²A=a²/c²+b²/c²=(a²+b²)/c²=1根据以上研究,求sin²13度+sin²23度+sin²41度+cos²13度+cos²23度+cos²41度的值这里的分数A/C是A除以C的意思,即A分之C.
问题描述:
在RT△ABC中,角C=90,角A,角B的对边分别为a,b,c,由sinA=a/c,cosA=b/c可得sin²A+cos²A=a²/c²+b²/c²=(a²+b²)/c²=1根据以上研究,
求sin²13度+sin²23度+sin²41度+cos²13度+cos²23度+cos²41度的值
这里的分数A/C是A除以C的意思,即A分之C.
答
由sin²A+cos²A=1,得sin²13度+sin²23度+sin²41度+cos²13度+cos²23度+cos²41=(sin²13度+cos²13度)+(sin²23度+cos²23度)+(sin²41度+cos²41度)=...