已知函数f(x)=sinx-cosx,x∈R,A,B,C为△ABC内角(1)求函数f(x)的单调递增区间(2)若函数f(A)=√6/2求A(3)若B=π/6,且存在实数a使方程f(A)=a有两解,求y=cosA+sinC的取值范围
问题描述:
已知函数f(x)=sinx-cosx,x∈R,A,B,C为△ABC内角
(1)求函数f(x)的单调递增区间
(2)若函数f(A)=√6/2求A
(3)若B=π/6,且存在实数a使方程f(A)=a有两解,求y=cosA+sinC的取值范围
答
(1) f(x)=sinx-cosx=√2sin(x-π/4), (x-π/4)∈[2kπ-π/2,2kπ+π/2]单调递增
2kπ-π/2≤x-π/4≤2kπ+π/2
2kπ-π/4≤x≤2kπ+3π/4
(2)f(A)=√2sin(A-π/4)=√6/2
sin(A-π/4)=√3/2
A-π/4=π/3 或2π/3
A=7π/12或 11π/12
(3) B=π/6, A+C=5π/6, y=cosA+sinC=cosA+sin(5π/6-A)=√3sin(A+π/3)
f(A)=√2sin(A-π/4)=a, 有两解, 又∵A