已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 则xy/x+y=?AG=mAM+nAN,共线条件得m+n=1AG=(1/3)AB+(1/3)ACAM=xAB,AN=yAC于是mx=1/3,ny=1/3得m=1/(3x),n=1/(3y)于是1/(3x)+1/(3y)=13=(x+y)/xy得xy/(x+y)=1/3 问:为什么m+n=1,还有为什么1/3AM+1/3AN=AG?
问题描述:
已知点G为三角形ABC的重心 过G作直线与AB AC两边分别交与M N 两点 且向量AM=xAB AN=yAC 则xy/x+y=?
AG=mAM+nAN,共线条件得m+n=1
AG=(1/3)AB+(1/3)AC
AM=xAB,AN=yAC
于是mx=1/3,ny=1/3
得m=1/(3x),n=1/(3y)
于是1/(3x)+1/(3y)=1
3=(x+y)/xy
得xy/(x+y)=1/3
问:为什么m+n=1,还有为什么1/3AM+1/3AN=AG?
答
先回答第一个问题:这是一个向量共线的基本问题:如果向量满足OA=mOB+nOC的关系(其中m、n为非零实数),且A、B、C三点共线,则必有m+n=1;相反地,如果向量满足OA=mOB+nOC的关系(其中m、n为非零实数),且m+n=1,则必有...