求函数fx=sin^4x+cos^4x+sin^2xcos^2x/2-2sinxcosx的最小正周期,最大值和最小值

问题描述:

求函数fx=sin^4x+cos^4x+sin^2xcos^2x/2-2sinxcosx的最小正周期,最大值和最小值

f(x)=(sin^4x+cos^4x+sin^2xcos^2x)/(2-2sinxcosx)
=(1-sin^2xcos^2x)/(2*(1-sinxcosx))
=(1+sinxcosx)/2=1/2+sin2x/4
max=1/2+1=3/2
min=1/2-1=-1/2
最小正周期π/2

f(x)=sin^4x+cos^4x+sin^2xcos^2x/2-2sinxcosx=(sin²x+cos²x)²-3sin²xcos²x/2-2sinxcosx=1-3sin²2x/8-sin2x=-(3/8)(sin2x+4/3)²+5/3,显然,最小正周期为2π/2=π.当sin2x= -1时,f...