求函数f(x)=(sin^4x+cos^4x+sin^2xcos^2x)/(2-sin2x)的最小正周期,值域及单调增区间
问题描述:
求函数f(x)=(sin^4x+cos^4x+sin^2xcos^2x)/(2-sin2x)的最小正周期,值域及单调增区间
如题
答
f(x)=(sin^4 x+cos^4 x+sin^2 xcos^2 x)/(2-sin2 x)=(sin^4 x+cos^4 x+2sin^2 xcos^2 x-sin^2 xcos^2 x)/(2-sin2 x)=[(sin^2 x+cos^2 x)^2-(sinxcosx)^2]/(2-sin2x)=[1-(sinxcosx)^2]/(2-2sinxcosx)=[(1+sinxcosx)...