如下己知函数f(x)=3sin平方x+2根号3sinxcosx+cos平方x,x属于R.(1)求函数f(x)的最大值与单调递增区间;(2)求使f(x)大于不等于3成立的x集合.

问题描述:

如下己知函数f(x)=3sin平方x+2根号3sinxcosx+cos平方x,x属于R.
(1)求函数f(x)的最大值与单调递增区间;
(2)求使f(x)大于不等于3成立的x集合.

f(x)=3sin²x+2√3sinxcosx+cos²x=2sin²x+√3sin2x+1=1-cos2x+√3sin2x+1
=2sin(2x-π/6)+2
当2x-π/6=2kπ+π/2时,f(x)取得最大值2+2=4;
由:2kπ-π/2≤2x-π/6≤2kπ+π/2即:kπ-π/6≤x≤kπ+π/3时,f(x)递增;
所以f(x)的增区间为:[kπ-π/6,kπ+π/3];
f(x)>3,即:sin(2x-π/6)>½; 则:2kπ+π/6 kπ+π/63成立的x的集合为( kπ+π/6,kπ+π/2)

(1)f(x)=3sin²x+2√3sinxcosx+cos²x
=(√3sinx)²+2√3sinxcosx+cos²x
=(√3sinx+cosx)²
=4sin²(x+п/6)
∴f(x)的最大值为4
函数单调增区间为:2kп-п/2 ∴函数的单调增区间为[2kп-2п/3,2kп+п/3]
(2)4sin²(x+п/6)≥3
sin²(x+п/6)≥3/4
sin(x+п/6)≥√3/2或者sin(x+п/6)≤-√3/2
2Kп+п/3≤x+п/6≤2Kп+4п/3或者2Kп-4п/3≤x+п/6≤2Kп-п/3
所以满足条件的集合有[2kп+п/6,2kп+7п/6]∪[2kп-3п/2,2kп-п/2]

3sin²x+2√3sinxcosx+cos²x
=2sin²x+2√3sinxcosx+1
=4sinx(1/2sinx+√3/2cosx)+1
=4sinx(cosπ/3sinx+sinπ/3cosx)+1
=4sinxsin(x+π/3)+1
=-2[cos(2x+π/3)-cos(π/3)+1
=-2cos(2x+π/3)+2
(1)函数最大值4,单调递增区间2x+π/3=[2nπ,(2n+1)π)
x=[nπ-π/6,nπ+π/3]
(2)求使f(x)大于不等于3成立的x集合.
f(x)=-2cos(2x+π/3)+2>3
cos(2x+π/3)<-1/2
2π/3+2nπ<2x+π/3<4π/3+2nπ
π/6+nπ<x<π/2+nπ

f(x)=3sin平方x+2根号3sinxcosx+cos平方x
=2sin^2x+√3sin2x+1
=√3sin2x-cos2x+2
=2sin(2x-π/6)+2
(1) fmax=4
减区间 2kπ+π/2kπ+π/3[kπ+π/3,kπ+5π/6] k∈Z
2. 2sin(2x-π/6)+2sin(2x-π/6)+22kπ-7π/6kπ-π/2成立的x集合 [kπ-π/2,kπ+π/6] k∈Z

f(x)=3sin²x+2√3sinxcosx+cos²x=3(1-cos2x)/2+√3sin2x+(1+cos2x)/2=√3sin2x-cos2x+2=2[sin2x*cos(π/6)-cos2x*sin(π/6)]+2=2sin(2x-π/6)+2(1) 当2x-π/6=2kπ+π/2,k∈Z时,有最大值 4增区间 2kπ-π/...