高考 已知F1,F2为双曲线x2-y2=1(2为二次方)的左右焦点,点P在曲线上,角F1PF2=60度,求P到X轴的距离
问题描述:
高考 已知F1,F2为双曲线x2-y2=1(2为二次方)的左右焦点,点P在曲线上,角F1PF2=60度,求P到X轴的距离
答
PF1=p,PF2=q
|p-q|=2a=2
p2+q2-2pq=4
p2+q2=2pq+4
c2=1+1=2
c=√2
F1F2=2c=2√2
cos60=1/2=(p2+q2-8)/2pq
pq=4
三角形PF1F2面积=12pqsin60=√3
三角形底边F1F2=2√2
所以P到x轴的距离=√6/2