已知cotB=5^-2,sinA/sinB=sin(A+B),求cot(A+B)的值.

问题描述:

已知cotB=5^-2,sinA/sinB=sin(A+B),求cot(A+B)的值.

将cot拆cos/sin 得出cosB和sinB的比
得tan cot
总结后
再cot(A+B) 拆公式

∵sina/sinb=sin(a+b) ==> sina/sinb=sina*cosb+cosa*sinb
==> 1/sinb=cosb+cota*sinb
==> 1/sin²b=cotb+cota
==> csc²b=cotb+cota
==> 1+cot²b=cotb+cota
==> cota=1+cot²b-cotb
又cotb=√5
∴cota=1+5-√5=6-√5
故 cot(a+b)=(cota*cotb-1)/(cota+cotb)
=[(6-√5)*√5-1]/(6-√5+√5)
=6(√5-1)/6
=√5-1.