已知α、β为锐角,且tanα=1/7,tanβ=1/3,则sin(α+2β)=?
问题描述:
已知α、β为锐角,且tanα=1/7,tanβ=1/3,则sin(α+2β)=?
答
解:由tanα=1/7,tanβ=1/3可得 sin(2β)=2tanβ/[1+(tanβ)^2]=3/5 cos(2β)=[1-(tanβ)^2]/[1+(tanβ)^2]=4/5 sin(α)=1/√50 cos(α)=7/√50
所以sin(α+2β)=sin(α) cos(2β)+cos(α)sin(2β)=(1/√50)*(4/5)+ (7/√50)*(3/5 )=√2/2
答
tanα=1/7,α为锐角sinα=1/√50,cosα=7/√50,tanβ=1/3,sinβ=1/√10,cosβ=3/√10sin2β=2sinβcosβ=3/5,cos2β=2cos²β-1=4/5sin(α+2β)=sinαcos2β+cosαsin2β=1/√50*(4/5)+7/√50*(3/5)=25/(5*√50)...