若tan(α+β)=3,tan(β-π4)=2,则tan(α+π4)=______.

问题描述:

若tan(α+β)=3,tan(β-

π
4
)=2,则tan(α+
π
4
)
=______.

∵tan(α+β)=3,tan(β-

π
4
)=2,α+
π
4
=(α+β)-(β-
π
4
),
∴tan(α+
π
4

=tan[(α+β)-(β-
π
4
]
=
tan(α+β)−tan(β−
π
4
)
1+tan(α+β)tan(β−
π
4
)

=
3−2
1+3×2

=
1
7

故答案为:
1
7

答案解析:由于α+
π
4
=(α+β)-(β-
π
4
),利用两角差的正切即可求得答案.
考试点:两角和与差的正切函数.
知识点:本题考查两角和与差的正切函数,考查观察能力与整体代入的意识,属于中档题.