求出 sinx/(sinx+cosx)在区间(0,pai)上的定积分值
问题描述:
求出 sinx/(sinx+cosx)在区间(0,pai)上的定积分值
答
sinx / (sinx+cosx) = 1 - (cosx-sinx) / (sinx+cosx)
∫ sinx / (sinx+cosx) dx = x - ln|sinx+cosx| + C
=》所求定积分 = π
答
结果为π /2
sinx / (sinx+cosx) = (1/2)[1 - (cosx-sinx) / (sinx+cosx)]
∫ sinx / (sinx+cosx) dx = (1/2)[x - ln|sinx+cosx| ]+ C
答
∫sinxdx/(sinx+cosx)=∫sinx(cosx-sinx)dx/cos2x=∫(-1/2)dcos2x/cos2x + ∫(1/2)(cos2x-1)dx/cos2x=(-1/2)ln|cos2x| -∫(1/4)d2x/cos2x +(1/2)x =(-1/2)ln|cos2x|-(1/8)ln[(1+cos2x)/(1-cos2x)] +(1/2)x +C=(-1/2)...