证明若n阶方阵A有n个对应特征值λ且线性无关的特征向量,则A=λI(大学线代)给好评给采纳,I是单位矩阵,有的地方也用E
问题描述:
证明若n阶方阵A有n个对应特征值λ且线性无关的特征向量,则A=λI(大学线代)给好评给采纳,I是单位矩阵,有的地方也用E
答
证明若n阶方阵A有n个对应特征值λ且线性无关的特征向量,则A=λI(大学线代)给好评给采纳,I是单位矩阵,有的地方也用E