若sina,cosa是方程4xx+2mx+m=0的两根,则m的值为?

问题描述:

若sina,cosa是方程4xx+2mx+m=0的两根,则m的值为?


方程有实根,判别式≥0
(2m)^2-16m≥0
m(m-4)≥0
m≥4或m≤0
由韦达定理,得
sina+cosa=-m/2
sinacosa=m/4
(sina)^2+(cosa)^2=1
(sina+cosa)^2-2sinacosa=1
m^2/4-m/2=1
整理,得
m^2-2m-4=0
(m-1)^2=5
m=1+√5(m=1-√5

sina+cosa=-m/2,(sina+cosa)^2=m2/2,1+2sinacosa=m2/2
sinacosa=m/4
所以1+m/4=m2/2
m=√33/16+1/46或-√33/16+1/4

(sina)^2 + (cosa)^2 = 1
x1^2 + x2^2 = 1
x1^2 + x2^2 = (x1 + x2)^2 - 2x1x2 = (-m/2)^2 - 2(m/4) = m^2/4 - m/2 = 1
m1 = 1+√5 (舍去)
m2 = 1- √5

sina,cosa是方程4xx+2mx+m=0的两根
sina+cosa=-m/4
sina*cosa=m/4
(sina+cosa)^2=sina^2+cosa^2+2sina*cosa=1+m/2=-m/4
m=-4/3

韦达定理sina+cosa=-m/2sinacosa=m/4因为sin²a+cos²a=1则(sina+coa)²-2sinacosa=1m²/4-m/2=1m²-2m-4=0m=1±√5判别式大于等于04m²-16m>=0m=4所以m=1-√5