已知函数f(x)对一切x,y 都有f(x+y)=f(x)+f(y) 1.求证f(x)是奇函数; 2.若f(-3)=a,试用a表示f(12)设f(x)是定义在[-1,1]上的奇函数,对任意a.b∈[-1,1],当a+b≠0时,都有[f(a)+f(b)]/(a+b)>0,1.若a>b,试比较f(a)与f(b)的大小 2.解不等式f(x-1/2)<f(2x-1/4)

问题描述:

已知函数f(x)对一切x,y 都有f(x+y)=f(x)+f(y) 1.求证f(x)是奇函数; 2.若f(-3)=a,试用a表示f(12)
设f(x)是定义在[-1,1]上的奇函数,对任意a.b∈[-1,1],当a+b≠0时,都有[f(a)+f(b)]/(a+b)>0,1.若a>b,试比较f(a)与f(b)的大小 2.解不等式f(x-1/2)<f(2x-1/4)

(1)∵f(a)+f(b)/(a+b)>0 ∴f(a)+f(b)和a+b同号 ∴f(x)是定义在[-1,1]上的奇函数 ∴f(-x)=-f(x) 当a>-b时,f(a)-f(-b)/(a+b)=f(a)+f(b)/(a+b)>0 ∴f(a)+f(b)>0 ∴f(x)是定义在[-1,1]上的递增函数 ∴若a>b,f(a)>f...