用数学归纳法证明:1+3+5+…+(2n-1)=n2.

问题描述:

用数学归纳法证明:1+3+5+…+(2n-1)=n2

证明:(1)当n=1时,左边=1,右边=1,
∴左边=右边
(2)假设n=k时等式成立,即1+3+5+…+(2k-1)=k2
当n=k+1时,等式左边=1+3+5+…+(2k-1)+(2k+1)=k2+(2k+1)=(k+1)2
综上(1)(2)可知1+3+5+…+(2n-1)=n2对于任意的正整数成立.
答案解析:首先证明当n=1时等式成立,再假设n=k时等式成立,得到等式1+3+5+…+(2k-1)=k2,下面证明当n=k+1时等式左边=1+3+5+…+(2k-1)+(2k+1),根据前面的假设化简即可得到结果,最后得到结论.
考试点:数学归纳法.


知识点:本题考查用数学归纳法证明等式成立,用数学归纳法证明问题的步骤是:第一步验证当n=n0时命题成立,第二步假设当n=k时命题成立,那么再证明当n=k+1时命题也成立.本题解题的关键是利用第二步假设中结论证明当n=k+1时成立,本题是一个中档题目.