用数学归纳法证明不等式:1n+1n+1+1n+2+…+1n2>1(n∈N*且n>1).
问题描述:
用数学归纳法证明不等式:
+1 n
+1 n+1
+…+1 n+2
>1(n∈N*且n>1). 1 n2
答
知识点:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.
证明:(1)当n=2时,左边=
+1 2
+1 3
=1 4
>1,∴n=2时成立(2分)13 12
(2)假设当n=k(k≥2)时成立,即
+1 k
+1 k+1
+…+1 k+2
>11 k2
那么当n=k+1时,左边=
+1 k+1
+1 k+2
+…+1 k+3
1 (k+1)2
=
+1 k
+1 k+1
+1 k+2
+…+1 k+3
+1
k2+2k
−1 (k+1)2
1 k
>1+
+1
k2+1
+…+1
k2+2
−1 (k+1)2
1 k
>1+(2k+1)•
−1 (k+1)2
>1+1 k
>1
k2−k−1
k2+2k+1
∴n=k+1时也成立(7分)
根据(1)(2)可得不等式对所有的n>1都成立(8分)
答案解析:直接利用数学归纳法的证明步骤证明不等式,(1)验证n=2时不等式成立;(2)假设当n=k(k≥2)时成立,利用放缩法证明n=k+1时,不等式也成立.
考试点:用数学归纳法证明不等式.
知识点:本题是中档题,考查数学归纳法的证明步骤,注意不等式的证明方法,放缩法的应用,考查逻辑推理能力.