高数!求极限时什么时候可以分开求?等价无穷小代换什么时候可以用?什么时候可以在f(x)中直接代入x趋近的那个值?

问题描述:

高数!求极限时什么时候可以分开求?等价无穷小代换什么时候可以用?
什么时候可以在f(x)中直接代入x趋近的那个值?

1.求极限时什么时候可以分开求?
分开后要保证各个部分有极限.
2.等价无穷小代换不能一般不能在有加减时进行,但这并不是绝对的,下面的结论在做代换时十分有用:
(1)两个无穷小量相减时,如果它们不是等价无穷小量,可以分别用它们的等价无穷小量来代换.(2)类似地,如果两个无穷小量相加时,则它们相比的极限不等于-1时,才能分别用它们的等价无穷小量来代换.
这两个结论是可以证明的,如需要,请告诉邮箱,并有应用例子说明.