x^2+xy分之x-y 除以x^2y^2-x^4分之xy-x^2*x-y分之1

问题描述:

x^2+xy分之x-y 除以x^2y^2-x^4分之xy-x^2*x-y分之1

﹙x-y﹚/﹙x^2+xy﹚÷﹙xy-x^2﹚/﹙x^2y^2-x^4﹚×1/﹙x-y﹚
=[﹙x-y﹚/x﹙x﹢y﹚]×[x^2﹙y-x﹚﹙y﹢x﹚/x﹙y-x﹚]×[1/﹙x-y﹚]1
=1

(x-y)/(x^2+xy)÷(xy-x^2)/(x^2y^2-x^4)X1/(x-y)
=(x-y)/(x^2+xy)÷(xy-x^2)/(x^2+xy)(xy-x^2)X1/(x-y)
=(x-y)/(x^2+xy)÷(x^2+xy)X1/(x-y)
=1