抛物线的顶点是(6,-12)与x轴两交点之间的距离为4,求函数解析式.

问题描述:

抛物线的顶点是(6,-12)与x轴两交点之间的距离为4,求函数解析式.

y=a(x-6)²-12
=ax²-12ax+36a-12
则x1+x2=12
x1x2=(36a-12)/a
则|x1-x2|²=4²=(x1+x2)²-4x1x2
12-4(36a-12)/a=16
(36a-12)/a=-1
a=12/37
所以y=12x²/37-144x/37-12/37