高中数学题,函数部分的(1.) 4sin²X+6cosX-6(-π/3≤X≤2π/3) (2.) sin2X+cosX 都是化解题 最好能写一下步骤
问题描述:
高中数学题,函数部分的
(1.) 4sin²X+6cosX-6(-π/3≤X≤2π/3)
(2.) sin2X+cosX
都是化解题 最好能写一下步骤
答
(1)应该是求解取值范围吧
4sin²X+6cosX-6
=4(1-cos²X)+6cosX
=-4(cosX-3/4)²+25/4
用换元法,二次函数符合余弦函数
答
(1)4-4cos2X+6cosX-6
=-2(2cos2X-3cosX+1)
=-2(cosX-1)(2cosX-1)
(2) 2sinXcosX+cosX
=cosX(2sinX+1)
答
化解题?
单纯化解的话,
4sin²X+6cosX-6=4-4cos^2(X)+6cosX-6=-2(2cos^2(X)-3cosX+1)
=-2(cosX-1)(2cosX-1)
sin2X+cosX=2sinXcosX+cosX=cosX(2sinX+1)
答
4sin²X+6cosX-6=4(1-cos²X)+6cosX,然后把cosX当做未知数,画成一元二次方程,即-4(cosX-3/4)²+25/4,算cosX自己算范围
sin2X+cosX这个没什么好化,你说清楚来