已知关于X的方程:x/x-2-2=m^2/x-3 无解,求m的值

问题描述:

已知关于X的方程:x/x-2-2=m^2/x-3 无解,求m的值

x/(x-2)-2=m^2/(x-3)(4-x)/(x-2)=m^2/(x-3)(4-x)(x-3)/(x-2)(x-3)=m^2(x-2)/(x-3)(x-2)[x^2-(7-m^2)x+12-2m]/((x-3)(x-2)=0方程无解,则:x=2或x=3当x=2时,x^2-(7-m^2)x+12-2m=0 m无解当x=3时,x^2-(7-m^2)x+12-2m=0 m...第三步应该怎么转成第四步阿(4-x)(x-3)/(x-2)(x-3)=m^2(x-2)/(x-3)(x-2)[x^2-(7-m^2)x+12-2m]/((x-3)(x-2)=0你是说这一步吗?通分后,再将分子(4-x)(x-3)相乘,并合并同类项然后移项,全部移动到等号右边[x^2-(7-m^2)x+12-2m]/((x-3)(x-2)=0 第二个M应该要有个平方吧当x=2时,x^2-(7-m^2)x+12-2m^2=0m无解当x=3时,x^2-(7-m^2)x+12-2m^2=0m=0∴m=0