平行四边形一边长为10,一条对角线为12,则他的另一条对角线的取值范围是

问题描述:

平行四边形一边长为10,一条对角线为12,则他的另一条对角线的取值范围是

平行四边形对角线的平方和等于它两边平方和的两倍.
设平行四边形另外一条边长为a,另外一条对角线长为d,那么有
d²+12²=2(10²+a²),解得d²=56+a²,因为a²>0,所以d²>56,而d>0,所以d>2√14.