解微分方程y'+2xy=e^(-x^2)满足初始条件y(0)=2的特解
问题描述:
解微分方程y'+2xy=e^(-x^2)满足初始条件y(0)=2的特解
答
y'+2xy=xe^(-x)
y'+2xy=0
y'=-2xy
dy/y=-2xdx
y=C0e^(-x^2)
设y=c0(x)e^(-x^2)
C0'e^(-x^2)=xe^(-x)
dC0=xe^(x^2-x)dx
∫xe^(x^2-x)dx=(1/2)∫(2x)e^(x^2-x)dx=(1/2)∫e^(x^2)d(x^2)/e^x=(1/2)∫de^(x^2)/e^x
=(1/2)∫d(e^x^2)/(e^(x^2))^(1/2)
=(e^x^2)^(1/2) +C1
dC0=d(e^(x^2))^(1/2)
C0(x)=(e^(x^2))^(1/2)+C1
y=(e^x^2)^(1/2-1)+C1e^(-x^2)
=e^(-x)+C1e^(-x^2)