七下数学题 有边数分别为x、一个y、z的正多边形,这些正多边形的边长相等,边数不等;如果每种正多边形,各

问题描述:

七下数学题 有边数分别为x、一个y、z的正多边形,这些正多边形的边长相等,边数不等;如果每种正多边形,各
取一个拼在A点,恰好能覆盖住A点及周围小区域.1猜想,你能对请你写出一个关于x、y、z之间的关系的猜想,你能对你给出的这个猜想进行证明吗?

当z=3,1/x+1/y=1/6,即y/x+1=y/6
猜想一:所以对于整数xyz,y是x和6的倍数,且y/x+1=y/6时,正x边形和正y边形一起能覆盖一个圆周角
证明方法是以上的逆推过程.
当z=4,1/x+1/y=1/4,即y/x+1=y/4
猜想二:所以对于整数xyz,y是x和4的倍数,且y/x+1=y/6时,正x边形和正y边形一起能覆盖一个圆周角
证明方法是以上的逆推过程.
猜想三:对于整数xyz,当xyz均大于6,不能一起能覆盖一个圆周角