若x-y=1,x3-y3=2,则x4+y4=_,x5-y5_.
问题描述:
若x-y=1,x3-y3=2,则x4+y4=______,x5-y5______.
答
∵x3-y3=(x-y)(x2+xy+y2)=2,x-y=1,x3-y3=(x-y)(x2+xy+y2)=2,又∵x2-2xy+y2=1,与上式联立得:xy=13,x2+y2=53,故x4+y4=(x2+y2)2-2x2y2=239,又x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4...