1*2*3+2*3*4+3*4*5+5*6*7+.10*11*12

问题描述:

1*2*3+2*3*4+3*4*5+5*6*7+.10*11*12

n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)=n(n+1)(n+2)[(n+3)-(n-1)]=4n(n+1)(n+2) ,
所以 1*2*3+2*3*4+.+10*11*12
=1/4*[(1*2*3*4-0*1*2*3)+(2*3*4*5-1*2*3*4)+.+(10*11*12*13-9*10*11*12)]
=1/4*(10*11*12*13-0*1*2*3)
=10*11*12*13/4
=4290 .
(一般地,有 1*2*3+2*3*4+.+n(n+1)(n+2)=n(n+1)(n+2)(n+3)/4 .)