若1/x—1/y=3,则(x—3xy—y)/(3x—2xy—3y)=?

问题描述:

若1/x—1/y=3,则(x—3xy—y)/(3x—2xy—3y)=?
请写下具体过程

(x-3xy-y)/(3x-2xy-3y)
={xy[(1/y)-3-(1/x)]}/{xy[(3/y)-2-(3/x)]}
=[(1/y)-(1/x)-3]/[(3/y)-(3/x)-2]
=[(-3)-3]/[3*(-3)-2]
=(-6)/(-9-2)
=(-6)/(-11)
=6/11