求方程x+y+xy=2008的正整数解.

问题描述:

求方程x+y+xy=2008的正整数解.

∵x+y+xy=2008⇒(x+xy)+(y+1)=2009⇒x(y+1)+(y+1)=2009⇒(x+1)(y+1)=2009,
∵2009可分解为1与2009、7与287、41与49,
当x+1=1,y+1=2009时,x=0不合题意舍去;
当x+1=2009,y+1=1时,y=0不合题意舍去;
当x+1=7,y+1=287时,x=6,y=286;
当x+1=287,y+1=7时,x=286,y=6;
当x+1=41,y+1=49时,x=40,y=48;
当x+1=49,y+1=41时,x=48,y=40.
所以方程x+y+xy=2008的正整数解是:x=6与y=286,x=286与y=6,x=40与y=48,x=48与y=40.