若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
问题描述:
若三角形ABC的内角满足sin2A=2/3 则sina+cosa=_____ (sinA+cosA)^2=1+sin2A=5/3 所以sinA+cosA=根号15/3 为什么sinA+cosA就=根号15/3了呢 请懂的人讲讲
答
根号下(5/3)=根号5/根号3
因为下出来的分母不能带根号 所以分母的根号3要换成有理数
方法就是分母分子同时乘以一个根号3
最后就得根号15/3