定义在R上的奇函数有最小正周期A,且X属于(0,1)时,F(X)=2的X次/{(4的X次)+1}1:求F(X)在[-1,1]上的解析试.2:实数K为何值时方程F(X)=K有解?
问题描述:
定义在R上的奇函数有最小正周期A,且X属于(0,1)时,F(X)=2的X次/{(4的X次)+1}
1:求F(X)在[-1,1]上的解析试.
2:实数K为何值时方程F(X)=K有解?
答
(1)由x属于(0,1)时F(x)=2^x/(4^x+1),及F是奇函数,得到:当x属于(-1,0)时,-x属于(0,1)F(x)= -F(-x)= -2^(-x)/[4^(-x)+1]= -2^x/(4^x+1).所以 F(x)=2^x/(4^x+1),x属于(0,1);F(x)= -2^x/(4^x+1),x属于(-1,0).(...