假设lim(x趋于0)[(sin6x+xf(x))/x^3]=0,则lim(x趋于0)[(6+f(x))/x^2]=?,

问题描述:

假设lim(x趋于0)[(sin6x+xf(x))/x^3]=0,则lim(x趋于0)[(6+f(x))/x^2]=?,

求两个式子相减的极限
即化简得lim(sin6x-6x)/x³
然后多次利用洛必达法则即可得极限为-36
再根据极限的四则运算可得
所求极限为36lim(sin6x-6x)/x³怎么来的?lim(sin6x+xf(x))/x³-(6+f(x))/x²