已知函数fx=loga(2+x)-loga(2-x)(a>0,且a≠1),

问题描述:

已知函数fx=loga(2+x)-loga(2-x)(a>0,且a≠1),
已知是偶函数,若1是y=f(x)-x的零点,判断f(x)的单调性并用定义证明

答:
f(x)=loga(2+x)-loga(2-x)
定义域满足:
2+x>0
2-x>0
所以:-2