一列数,前两个数是1,3,从第三个数开始,每个数都是它前面两个数的和,即1,3,4,7,11,18,29,…到第2006个数为止,共有_个奇数.

问题描述:

一列数,前两个数是1,3,从第三个数开始,每个数都是它前面两个数的和,即1,3,4,7,11,18,29,…到第2006个数为止,共有______个奇数.

这个数列是按照“奇数、奇数、偶数”的顺序循环重复排列的;每一组循环中有2个奇数和1个偶数;
2006÷3=668(组)…2(个);
余数是2,这两个数都是奇数;
668×2+2=1338;
答:共有1338个奇数.