已知y1=2x平方,将其向右平移2个单位得y2,p是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线

问题描述:

已知y1=2x平方,将其向右平移2个单位得y2,p是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线
2010义乌中考

:(1)抛物线y1=2x2向右平移2个单位,得:y=2(x-2)2=2x2-8x+8;
故抛物线y2的解析式为y2=2x2-8x+8.
(2)由(1)知:抛物线y2的对称轴为x=2,故P点横坐标为2;
当x=t时,直线y=x=t,故A(t,t);
则y2=2x2-8x+8=2t2-8t+8,故B(t,2t2-8t+8);
若△ABP是以点A或点B为直角顶点的等腰直角三角形,则有AB=AP或AB=BP,
即:|t-2|=|2t2-8t+8-t|;
当2t2-8t+8-t=t-2时,t2-5t+5=0,解得t= ;
当2t2-8t+8-t=2-t时,t2-4t+3=0,解得t=1,t=3;
故符合条件的t值为:1,3或 .