设向量a=(sinx,cosx),b=(cosx,cosx),x∈R,函数f(X)=a乘以(a+b)

问题描述:

设向量a=(sinx,cosx),b=(cosx,cosx),x∈R,函数f(X)=a乘以(a+b)
(1)求函数f(x)的最大值和最小正周期(2)求使不等式f(x)>=3/2成立的x的取值

(1)
f(x)
= a.(a+b)
=|a|^2 - a.b
=1- 2sinxcosx
= 1- sin2x
最大值 = 2
最小正周期 = 180°
(2)
f(x) >= 3/2
1- sin2x >=3/2
sin2x