把正方形ABCD对折,得到折痕MN(如图①),展开后把正方形ABCD沿CE折叠,使点B落在MN上的点B′处,连接B′D(如图②).试求∠BCB′及∠ADB′的度数.

问题描述:

把正方形ABCD对折,得到折痕MN(如图①),展开后把正方形ABCD沿CE折叠,使点B落在MN上的点B′处,连接B′D(如图②).试求∠BCB′及∠ADB′的度数.
作业帮

作业帮 ∵点B落在MN上的点B′处,把正方形ABCD对折,得到折痕MN,
∴BC=B′C,BB′=B′C,
∴BC=BB′=B′C,
∴△B′BC是等边三角形,
∴∠BCB′=60°,
∴∠B′CD=30°,
∵DC=B′C,
∴∠CB′D=∠CDB′,
∴∠CB′D=∠CDB′=

1
2
×150°=75°,
∴∠ADB′=15°.
答案解析:利用翻折变换的性质得出以及垂直平分线的性质得出BC=B′C,BB′=B′C,进而得出△B′BC是等边三角形,再利用等腰三角形的性质求出∠ADB′的度数即可.
考试点:翻折变换(折叠问题);正方形的性质.
知识点:此题主要考查了翻折变换的性质以及等腰直角三角形的性质,根据已知得出DC=B′C进而得出∠CB′D=∠CDB′是解题关键.