若x+3y=0,xy≠0,则分式x2−3xyxy+y2的值是_.

问题描述:

若x+3y=0,xy≠0,则分式

x2−3xy
xy+y2
的值是______.

∵x+3y=0,xy≠0,
∴x=-3y,x≠0,y≠0,

x2−3xy
xy+y2
=
x(x−3y)
y(x+y)
=
3y(−3y−3y)
y(−3y+y)
=
−18
−2
=9.
故答案是:9.