如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
问题描述:
如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
答
证明:∵AD是△ABC的中线,
∴BD=CD,
∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°,
在△BDE和△CDF中,
,
∠BED=∠CFD=90° ∠BDE=∠CDF BD=CD
∴△BDE≌△CDF(AAS),
∴BE=CF.