已知函数f(x)=2根号3sinxcosx+2cos²x-1,(x∈R)
问题描述:
已知函数f(x)=2根号3sinxcosx+2cos²x-1,(x∈R)
(1)求函数f(x)的最小正周期及在闭区间(0,π/2)上的最大值和最小值
(2)若f(x0)=6/5,x0∈闭区间(π/4,π/2)求cos2x0的值
答
f(x)=2根号3sinxcosx+2cos²x-1
=根号3sin2x+cos2x
=2[sin2x*cosπ/6+cos2x*sinπ/6]
=2sin(2x+π/6)
(1)T=2π/2=π
最大值2和最小值-2
(2)2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
x0∈闭区间(π/4,π/2)
2x0+π/6∈闭区间(2π/3,7π/6)第二、三象限,cos(2x0+π/6)=-4/5
cos2x0=cos[(2x0+π/6)-π/6]
=cos(2x0+π/6)*cosπ/6+sin(2x0+π/6)*sinπ/6
-4/5*根号3/2+3/5*1/2
=(3-4根号3)/10