ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为(  )A. π4B. 1−π4C. π8D. 1−π8

问题描述:

ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为(  )
A.

π
4

B. 1−
π
4

C.
π
8

D. 1−
π
8

已知如图所示:
长方形面积为2,
以O为圆心,1为半径作圆,
在矩形内部的部分(半圆)面积为

π
2

因此取到的点到O的距离大于1的概率P=
2−
π
2
2
=1-
π
4

故选B.
答案解析:本题考查的知识点是几何概型的意义,关键是要找出点到O的距离大于1的点对应的图形的面积,并将其和长方形面积一齐代入几何概型计算公式进行求解.
考试点:几何概型.

知识点:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=
N(A)
N
求解.