求曲线x^2-y^2=3和x^2+y^2-z^2=4在点(-2,-1,1)处的切线及法平面方程.
问题描述:
求曲线x^2-y^2=3和x^2+y^2-z^2=4在点(-2,-1,1)处的切线及法平面方程.
答
x^2-y^2=3 (1)x^2+y^2-z^2=4 (2)(1)(2)分别对x求导:2x-2ydy/dx=02x+2ydy/dx-2zdz/dx=0所以:dy/dx=x/ydz/dx=2x/z所以dy/dx |(-2,-1,1)=2 dz/dx |(-2,-1,1)=-4所以切线方程是:(x+2)/1=(y+1)/2=(z-1)/-4法平...