已知(1+tanx)/(1-tanx)=5+2√6,求(1-sin2x)/cos2x的值

问题描述:

已知(1+tanx)/(1-tanx)=5+2√6,求(1-sin2x)/cos2x的值

(1+tanx)/(1-tanx)=5+2√6
1+tanx=(1-tanx)(5+2√6)
(6+2√6)tanx=4+2√6
tanx=√6/3
(1-sin2x)/cos2x=(cos^2x+sin^2x-2sinxcosx)/(cos^2x-sin^2x)=(1+tan^2x-tanx)/(1-tan^2x)
=(1+2/3-√6/3)/(1-2/3)=5-√6